Automatische Modellierung gebundener Handschrift

Automatische Modellierung gebundener Handschrift

Einband:
Kartonierter Einband (Kt)
EAN:
9783639029628
Untertitel:
Entwurf und Optimierung eines HMM-basierten Erkennungssystems
Genre:
Informatik & EDV
Autor:
Marc-Peter Schambach
Herausgeber:
VDM Verlag Dr. Müller e.K.
Anzahl Seiten:
192
Erscheinungsdatum:
2013

Gebundene Handschrift stellt die größte Herausforderung bei der automatischen
Schrifterkennung dar. Während bei Druckschrift Segmentierung und Erkennung der Zeichen sequentiell abgearbeitet werden können, beeinflussen sie sich bei Handschrift wechselseitig. Dies wird bei den meisten Systemen mit Hidden-Markov-Modellen (HMM) gelöst. So auch bei Powerscript, eingesetzt in der Postautomatisierung und eines der weltweit meistbenutzten Systeme, welches in Theorie, Realisierung und Ergebnissen detailliert beschrieben wird. Es erzielt hohe Erkennungsraten, weil es statistisch arbeitet: Das Aussehen der Zeichen wird nicht vorgegeben, sondern mit Beispielen
gelernt. Und dennoch werden Annahmen gemacht: Die Anzahl relevanter Schreibvarianten, ihre Größe und Komplexität werden durch die Topologien der Zeichen-HMM festgelegt. Ihre Optimierung ist das Thema des Buches. Es werden Modellwahlkriterien als Kompromiss zwischen Komplexität und Einfachheit definiert, anschließend werden verschiedene Optimierungsverfahren vorgestellt. Ihre Ergebnisse sind plausibel und verbessern die Erkennungsleistung, besonders bei fremden Schriften, wie Arabisch, für die kein Expertenwissen verfügbar ist.

Klappentext
Gebundene Handschrift stellt die größte Herausforderung bei der automatischen Schrifterkennung dar. Während bei Druckschrift Segmentierung und Erkennung der Zeichen sequentiell abgearbeitet werden können, beeinflussen sie sich bei Handschrift wechselseitig. Dies wird bei den meisten Systemen mit Hidden-Markov-Modellen (HMM) gelöst. So auch bei Powerscript, eingesetzt in der Postautomatisierung und eines der weltweit meistbenutzten Systeme, welches in Theorie, Realisierung und Ergebnissen detailliert beschrieben wird. Es erzielt hohe Erkennungsraten, weil es statistisch arbeitet: Das Aussehen der Zeichen wird nicht vorgegeben, sondern mit Beispielen gelernt. Und dennoch werden Annahmen gemacht: Die Anzahl relevanter Schreibvarianten, ihre Größe und Komplexität werden durch die Topologien der Zeichen-HMM festgelegt. Ihre Optimierung ist das Thema des Buches. Es werden Modellwahlkriterien als Kompromiss zwischen Komplexität und Einfachheit definiert, anschließend werden verschiedene Optimierungsverfahren vorgestellt. Ihre Ergebnisse sind plausibel und verbessern die Erkennungsleistung, besonders bei fremden Schriften, wie Arabisch, für die kein Expertenwissen verfügbar ist.


billigbuch.ch sucht jetzt für Sie die besten Angebote ...

Loading...

Die aktuellen Verkaufspreise von 6 Onlineshops werden in Realtime abgefragt.

Sie können das gewünschte Produkt anschliessend direkt beim Anbieter Ihrer Wahl bestellen.


Feedback