Einband:
Set mit div. Artikeln (Set)
Untertitel:
Mit Machine Learning und Datenanalyse Wert aus Daten generieren
Autor:
Katherine Munro, Stefan Papp, Zoltan Toth, Wolfgang Weidinger, Danko Nikolic, Barbora Antasova Vesela, Karin Bruckmüller, Annalisa Cadonna, Jana Eder, Jeannette Gorzala, Gerald A. Hahn, Georg Langs, Roxane Licandro, Christian Mata, Sean McIntyre, Mario Meir-Huber, György Móra, Manuel Pasieska, Victoria Rugli, Rania Wazir, Günther Zauner
Herausgeber:
Hanser Fachbuchverlag
Auflage:
3., aktualisierte und erweiterte Auflage
Erscheinungsdatum:
14.02.2025
- Bietet einen umfassenden Überblick über die verschiedenen Anwendungsbereiche von Data Science und KI - Mit Fallbeispielen aus der Praxis, um die beschriebenen Konzepte greifbar zu machen - Mit praktischen Beispielen, die Ihnen helfen, einfache Datenanalyseprojekte durchzuführen - Neu in der 3. Auflage: Generativ KI und LLMs, KI und Klimawandel, ML Ops und ML Security, Zahlreiche Kapitel wurden von Grund auf überarbeitet - Ihr exklusiver Vorteil: E-Book inklusive beim Kauf des gedruckten Buches Data Science, Big Data und künstliche Intelligenz gehören derzeit zu den Konzepten, über die in Industrie, Regierung und Gesellschaft viel gesprochen wird, die aber auch am häufigsten missverstanden werden. Dieses Buch erklärt die Konzepte und vermittelt Ihnen das praktische Wissen, um sie zu nutzen. Das Buch nähert sich den Themen Data Science und KI von mehreren Seiten. Es zeigt, wie Sie Data-Plattformen aufbauen und Data-Science-Tools und -Methoden einsetzen können. Auf dem Weg dorthin hilft es Ihnen zu verstehen und den verschiedenen Interessengruppen zuerklären , wie Sie mit diesen Techniken Mehrwert generieren können. So kann Data Science in Unternehmen dabei helfen, schnellere Entscheidungen zu treffen, Kosten zu senken und neue Märkte zu erschließen. Darüber hinaus werden die grundlegenden Konzepte von Data Science, einschließlich Statistik, Mathematik sowie rechtliche Überlegungen erklärt. Praktische Fallstudien veranschaulichen, wie aus Daten generiertes Wissen verschiedene Branchen langfristig verändern wird. Das Autor:innenteam besteht aus Datenexpert:innen aus der Wirtschaft und aus dem akademischen Umfeld. Das Spektrum reicht von strategisch ausgerichteten Führungskräften über Data Engineers, die Produktivsysteme erstellen, bis hin zu Data Scientists, die aus Daten Wert generieren. Alle Autor:innen sind im Vorstand oder Mitglieder der Vienna Data Science Group (VDSG). Diese NGO hat sich zum Ziel gesetzt, eine Plattform für den Wissensaustausch zu etablieren. AUS DEM INHALT // • Grundlagen der Mathematik: ML-Algorithmen verstehen und nutzen • Machine Learning: Von statistischen zu neuronalen Verfahren; von Transformers und GPT-3 bis AutoML • Natural Language Processing: Werkzeuge und Techniken zur Gewinnung von Erkenntnissen aus Textdaten und zur Entwicklung von Sprachtechnologien • Computer Vision: Erkenntnisse aus Bildern und Videos gewinnen • Modellierung und Simulation: Modellierung des Verhaltens komplexer Systeme, z. B. der Ausbreitung von COVID-19. Was-wäre-wenn-Analysen • ML und KI in der Produktion: Vom Experiment zum Data- Science-Produkt • Ergebnisse präsentieren: Grundlegende Präsentationstechniken für Data Scientists
Klappentext
Data Science, Big Data und künstliche Intelligenz gehören derzeit zu den Konzepten, über die in Industrie, Regierung und Gesellschaft am meisten diskutiert wird, die aber auch am meisten missverstanden werden. Dieses Buch klärt diese Konzepte und vermittelt Ihnen praktisches Wissen, um sie anzuwenden.
Das Buch nähert sich dem Thema Data Science von mehreren Seiten. Es zeigt Ihnen, wie Sie Datenplattformen aufbauen sowie Data Science Tools und -Methoden anwenden. Auf dem Weg dorthin hilft es Ihnen zu verstehen - und den verschiedenen Interessengruppen zu erklären - wie Sie aus diesen Techniken einen Mehrwert generieren können, z. B. indem Sie Data Science einsetzen, um Unternehmen dabei zu helfen, schnellere Entscheidungen zu treffen, Kosten zu senken und neue Märkte zu erschließen.
In einem zweiten Teil werden die grundlegenden Data-Science-Konzepte beschrieben, einschließlich mathematischer Grundlagen, Machine-Learning-Verfahren inklusive Frameworks sowie Text-, Bild- und Sprachverarbeitung. Abgerundet wird das Buch durch rechtliche Überlegungen und praktische Fallstudien aus verschiedenen Branchen.
AUS DEM INHALT //
- Grundlagen der Mathematik: ML-Algorithmen verstehen und nutzen
- Machine Learning: Von statistischen zu neuronalen Verfahren; von Transformers und GPT bis AutoML
- Natural Language Processing: Werkzeuge und Techniken zur Gewinnung von Erkenntnissen aus Textdaten und zur Entwicklung von Sprachtechnologien
- Computer Vision: Erkenntnisse aus Bildern und Videos gewinnen
- Modellierung und Simulation: Modellierung des Verhaltens komplexer Systeme, Durchführen von Was-wäre-wenn-Analysen
- ML und KI in der Produktion: Vom Experiment zum Data-Science-Produkt
- Ergebnisse präsentieren: Grundlegende Präsentationstechniken für Data Scientists
Das Autor:innenteam besteht aus Datenexpert:innen aus der Wirtschaft und aus dem akademischen Umfeld. Das Spektrum reicht von strategisch ausgerichteten Führungskräften über Data Engineers, die Produktivsysteme erstellen, bis hin zu Data Scientists, die aus Daten Wert generieren. Alle Autor:innen sind im Vorstand oder Mitglieder der Vienna Data Science Group (VDSG). Diese NGO hat sich zum Ziel gesetzt, eine Plattform für den Wissensaustausch zu etablieren.
Leider konnten wir für diesen Artikel keine Preise ermitteln ...
billigbuch.ch sucht jetzt für Sie die besten Angebote ...
Die aktuellen Verkaufspreise von
6 Onlineshops werden
in Realtime abgefragt.
Sie können das gewünschte Produkt anschliessend direkt beim Anbieter Ihrer Wahl bestellen.
# |
Onlineshop |
Preis CHF |
Versand CHF |
Total CHF |
|
|
1 |
Seller |
0.00 |
0.00
|
0.00 |
|
|
Onlineshops ohne Resultate: