Fahrzeugsicherheit und automatisiertes Fahren

Fahrzeugsicherheit und automatisiertes Fahren

Einband:
Kartonierter Einband
EAN:
9783446453265
Untertitel:
Methoden der Signalverarbeitung und des maschinellen Lernens
Genre:
Bau- & Umwelttechnik
Autor:
Michael Botsch, Wolfgang Utschick
Herausgeber:
Hanser Fachbuchverlag
Auflage:
1. Auflage
Anzahl Seiten:
448
Erscheinungsdatum:
08.06.2020
ISBN:
978-3-446-45326-5

Signalverarbeitung und maschinelles Lernen für das automatisierte Fahren Dieses Buch behandelt Methoden der Signalverarbeitung und des maschinellen Lernens, die in der integralen Fahrzeugsicherheit und für das automatisierte Fahren benötigt werden. Es vermittelt die mathematischen Grundlagen, um eigene Algorithmen für automatisierte Eingriffe in die Fahrzeugführung zu entwerfen und zu implementieren. Das Buch wendet sich an Ingenieure/-innen aus dem Bereich Automotive sowie an Studierende und Promovierende der Ingenieurwissenschaften. Folgende Themen werden behandelt: - Maschinelles Lernen (inklusive Deep Learning): Grundlagen und Anwendungen für das automatisierte Fahren, Convolutional Neural Networks, Random Forest, Autoencoder - Statistische Signalverarbeitung: Grundlagen der statistischen Filterung sowie Tracking von Objekten in der Fahrzeugumgebung, Kalman-Filter, Fusion von Sensordaten - Fahrzeugmodelle und Trajektorien: Fahrdynamikmodelle für die aktive Fahrzeugsicherheit und das automatisierte Fahren, Trajektorienplanung und Trajektorienfolgeregler, Kollisionsmodelle für die passive Fahrzeugsicherheit - Zeit- und Frequenzdarstellung von Signalen (z. B. Filterung von Beschleunigungssignalen in Airbag-Steuergeräten) - Mathematische Grundlagen für den Entwurf von Algorithmen: Lineare Algebra, Optimierung, Wahrscheinlichkeitstheorie und Lineare Systeme Die einzelnen Schwerpunkte werden durch Übungsaufgaben mit Musterlösungen veranschaulicht. Für Übungsaufgaben, bei denen es erforderlich ist, werden Matlab-Skripte zur Verfügung gestellt.

"Grundlagen der Signalverarbeitung und Mathematik, die für das Verständnis und die Auslegung von Algorithmen für das automatisierte Fahren und die Fahrzeugsicherheit unerlässlich sind, werden erklärt und vertieft. Anschließend werden Fahrzeugmodelle vorgestellt, die sich zur Modellierung des Fahrverhaltens eignen [...] Ausgehend von den Fahrzeugmodellen skizzieren die Experten dann Verfahren der Signalverarbeitung für Zustandschätzung von Fahrzeugen und Objekten im Fahrzeugumfeld, die einen zentralen Bestandteil von Trackingverfahren und Sensordatenfusionsmethoden darstellen." atz Autombobiltechnische Zeitung, September 2020 "Das Buch wendet sich an Ingenieure/-innen aus dem Bereich Automotive sowie Studierende und Promovierende der Ingenieurwissenschaften. Die einzelnen Schwerpunkte werden durch Übungsaufgaben mit Musterlösungen veranschaulicht." Hanser automotive, September 2020

Autorentext
Prof. Dr.-Ing. Wolfgang Utschick vertritt das Fachgebiet Methoden der Signalverarbeitung an der Fakultät für Elektrotechnik und Informationstechnik der Technischen Universität München. Seine Schwerpunkte in Lehre und Forschung liegen auf dem Gebiet der statistischen Signalverarbeitung, der mathematischen Optimierung und des maschinellen Lernens für drahtlose Sensor- und Kommunikationssysteme. In seinen jüngeren Forschungsarbeiten beschäftigt er sich zudem mit Fragestellungen der Fahrzeugsicherheit und dem automatisierten Fahren.

Klappentext
Signalverarbeitung und maschinelles Lernen für das automatisierte Fahren

Dieses Buch behandelt Methoden der Signalverarbeitung und des maschinellen Lernens, die in der integralen Fahrzeugsicherheit und für das automatisierte Fahren benötigt werden. Es vermittelt die mathematischen Grundlagen, um eigene Algorithmen für automatisierte Eingriffe in die Fahrzeugführung zu entwerfen und zu implementieren. Das Buch wendet sich an Ingenieure/-innen aus dem Bereich Automotive sowie an Studierende und Promovierende der Ingenieurwissenschaften.

Folgende Themen werden behandelt:
- Maschinelles Lernen (inklusive Deep Learning): Grundlagen und Anwendungen für das automatisierte Fahren, Convolutional Neural Networks, Random Forest, Autoencoder
- Statistische Signalverarbeitung: Grundlagen der statistischen Filterung sowie Tracking von Objekten in der Fahrzeugumgebung, Kalman-Filter, Fusion von Sensordaten
- Fahrzeugmodelle und Trajektorien: Fahrdynamikmodelle für die aktive Fahrzeugsicherheit und das automatisierte Fahren, Trajektorienplanung und Trajektorienfolgeregler, Kollisionsmodelle für die passive Fahrzeugsicherheit
- Zeit- und Frequenzdarstellung von Signalen (z. B. Filterung von Beschleunigungssignalen in Airbag-Steuergeräten)
- Mathematische Grundlagen für den Entwurf von Algorithmen: Lineare Algebra, Optimierung, Wahrscheinlichkeitstheorie und Lineare Systeme

Die einzelnen Schwerpunkte werden durch Übungsaufgaben mit Musterlösungen veranschaulicht. Für Übungsaufgaben, bei denen es erforderlich ist, werden Matlab-Skripte zur Verfügung gestellt.


billigbuch.ch sucht jetzt für Sie die besten Angebote ...

Loading...

Die aktuellen Verkaufspreise von 6 Onlineshops werden in Realtime abgefragt.

Sie können das gewünschte Produkt anschliessend direkt beim Anbieter Ihrer Wahl bestellen.


Feedback