The Biggest Ideas in the Universe

The Biggest Ideas in the Universe

Einband:
Fester Einband
EAN:
9780593186589
Untertitel:
Space, Time, and Motion
Autor:
Sean Carroll
Herausgeber:
Penguin LLC US
Anzahl Seiten:
304
Erscheinungsdatum:
20.09.2022
ISBN:
0593186583

Informationen zum Autor Sean Carroll Klappentext INSTANT NEW YORK TIMES BESTSELLER Most appealing... technical accuracy and lightness of tone ... Impeccable. Wall Street Journal A porthole into another world. Scientific American Brings science dissemination to a new level. Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come. Leseprobe One Conservation Look around. If you're like most people, you have a body. It's located somewhere. Chances are that you are surrounded by a variety of other objects, located other places. Tables, chairs, a floor, ceiling, walls, maybe trees or a body of water if you're outside. All of these objects exist, with certain locations and properties, and those locations and properties can change with time. You can scoot your chair nearer to a wall, or farther away. You drink a glass of water, absorbing its substance into your body. If instead you put the glass on a table and leave it there, the water will eventually evaporate into the air. That's how we think about the world from an immediate, human-scale perspective. There is stuff, which is located in space. (By "space" we don't mean "outer space," just the three-dimensional realm through which things move.) This stuff might change, or it might remain constant over time. Physics is the study of all that stuff, and its behavior, at the most basic level we can think of. What is all that stuff, really? How do different objects relate to one another? How do they change with time? What is "time," and for that matter what is "space," when you get right down to it? One of the most enjoyable features of physics is how quickly we go from mundane observations-look at that stuff, behaving in that way!-to profound questions about the nature of reality. The key is that things don't just happen-all of the happenings fit into certain patterns. It's those patterns that we call the laws of physics, and our job is to uncover them. The simplest pattern of all is the fact that certain things remain constant even as time passes. Contemplating that basic feature of reality is a great jumping-off point for our investigations, which will get pretty wild soon enough. Predictability We take for granted that the world around us is at least a little bit predictable. If there is a table in a room, and we turn to face away from it for just a second, we expect the table to still be there when we turn back. If we place an apple on the table, we expect the table to su...

Autorentext
Sean Carroll is Homewood Professor of Natural Philosophy at Johns Hopkins University, and Fractal Faculty at the Santa Fe Institute. He is host of the Mindscape podcast, and author of From Eternity to Here, The Particle at the End of the Universe, The Big Picture, and Something Deeply Hidden. He has been awarded prizes and fellowships by the National Science Foundation, NASA, the American Institute of Physics, the Royal Society of London, and many others. He lives in Baltimore with his wife, writer Jennifer Ouellette.

Klappentext
INSTANT NEW YORK TIMES BESTSELLER
“Most appealing... technical accuracy and lightness of tone... Impeccable.—Wall Street Journal
A porthole into another world.—Scientific American
Brings science dissemination to a new level.—Science

The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality.
 
Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. 
 
No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.

Leseprobe
One

Conservation

Look around. If you're like most people, you have a body. It's located somewhere. Chances are that you are surrounded by a variety of other objects, located other places. Tables, chairs, a floor, ceiling, walls, maybe trees or a body of water if you're outside. All of these objects exist, with certain locations and properties, and those locations and properties can change with time. You can scoot your chair nearer to a wall, or farther away. You drink a glass of water, absorbing its substance into your body. If instead you put the glass on a table and leave it there, the water will eventually evaporate into the air.

That's how we think about the world from an immediate, human-scale perspective. There is stuff, which is located in space. (By "space" we don't mean "outer space," just the three-dimensional realm through which things move.) This stuff might change, or it might remain constant over time. Physics is the study of all that stuff, and its behavior, at the most basic level we can think of. What is all that stuff, really? How do different objects relate to one another? How do they change with time? What is "time," and for that matter what is "space," when you get right down to it?

One of the most enjoyable features of physics is how quickly we go from mundane observations-look at that stuff, behaving in that way!-to profound questions about the nature of reality. The key is that things don't just happen-all of the happenings fit into certain patterns. It's those patterns that we call the laws of physics, and our job is to uncover them.

The simplest pattern of all is the fact that certain things remain constant even as time passes. Contemplating that basic feature of reality is…


billigbuch.ch sucht jetzt für Sie die besten Angebote ...

Loading...

Die aktuellen Verkaufspreise von 6 Onlineshops werden in Realtime abgefragt.

Sie können das gewünschte Produkt anschliessend direkt beim Anbieter Ihrer Wahl bestellen.