200 and More NMR Experiments

200 and More NMR Experiments

Einband:
Kartonierter Einband
EAN:
9783527310678
Untertitel:
A Practical Course
Genre:
Medizin
Autor:
Stefan Berger, Siegmar Braun
Herausgeber:
Wiley-VCH GmbH
Auflage:
2nd expanded edition, reprinted
Anzahl Seiten:
838
Erscheinungsdatum:
11.05.2004
ISBN:
3527310673

Die neue Auflage dieses außerordentlich erfolgreichen Werkes wurde um 50 wichtige NMR Experimente zu neuesten Entwicklungen erweitert. Das Buch ist gleichzeitig Lehrbuch und Referenz für das Labor. Daher ist es ein Muß für jeden Wissenschaftler, der sich mit NMR befaßt und für Studenten, die sich auf ihre Laborkurse vorbereiten.

This work-book will guide you safely, in step-by-step descriptions, through every detail of the NMR experiments within, beginning with 1D routine experiments and ending with a series of advanced 3D experiments on a protein: · Which experiment can best yield the desired information? · How must the chosen experiment be performed? · How does one read the required information from the spectrum? · How does this particular pulse sequence work? · Which other experiments give similar information? This third edition of the book, following its two highly successful predecessors, has been revised and expanded to 206 experiments. They are organized in 15 chapters, covering test procedures and routine spectra, variable temperature measurements, the use of auxiliary reagents, 1D multipulse experiments, spectra of heteronuclides, and the application of selective pulses. The second and third dimensions are introduced using pulsed field gradients, and experiments on solid state materials are described. A key part describes 3D experiments on the protein ubiquitin with 76 amino acids. What is new in this third edition? 1. 24 new experiments have been inserted into the 14 chapters that were in the 2nd edition, e.g., alpha/beta-SELINCOR-TOCSY, WET, DOSY, ct-COSY, HMSC, HSQC with adiabatic pulses, HETLOC. J-resolved HMBC, (1,1)- and (1,n)-ADEQUATE, STD, REDOR, and HR-MAS. 2. 20 new protein NMR experiments have been specially devised and are collected in the newly added Chapter 15, ProteinNMR, for which one needs a special model sample: fully 13C- and 15N-labeled human ubiquitin. Techniques used include the constant time principle, the PEP method, filters, gradient selection, and the echo/anti-echo procedure. The guide has been written by experts in this field, following the principle of learning by doing: all the experiments have been specially performed for this book, exactly as described and shown in the spectra that are reproduced. Being a reference source and work-book for the NMR laboratory as well as a textbook, it is a must for every scientist working with NMR, as well as for students preparing for their laboratory courses

Autorentext
Stefan Berger was intrigued by NMR after having won a bottle of beer during an introductory course in organic NMR led by Professor H. Suhr at the University of Tübingen in 1968. After completing a PhD thesis with Professor Anton Rieker, in 1973 he joined Professor J. D. Roberts at Caltech for postdoctoral work, where he also met Professor D.M. Grant and Professor D. Seebach, who were then guest professors in Pasadena. This period was decisive to try a Habilitation in NMR spectroscopy, which was achieved at the University Marburg. At the University Leipzig his aim is to combine methodological development of NMR and its application to bioorganic problems.

Inhalt
Preface v

Chapter 1 The NMR Spectrometer 1

1.1 Components of an NMR Spectrometer 1

1.1.1 The Magnet 1

1.1.2 The Spectrometer Cabinet 2

1.1.3 The Computer 3

1.1.4 Maintenance 3

1.2 Tuning a Probe-Head 3

1.3 The Lock Channel 4

1.4 The Art of Shimming 6

1.4.1 The Shim Gradients 6

1.4.2 The Shimming Procedure 8

1.4.3 Gradient Shimming 11

Chapter 2 Determination of Pulse-Duration 14

Exp. 2.1: Determination of the 90° 1H Transmitter Pulse-Duration 15

Exp. 2.2: Determination of the 90° 13C Transmitter Pulse-Duration 18

Exp. 2.3: Determination of the 90° 1H Decoupler Pulse-Duration 21

Exp. 2.4: The 90° 1H Pulse with Inverse Spectrometer Configuration 24

Exp. 2.5: The 90° 13C Decoupler Pulse with Inverse Configuration 27

Exp. 2.6: Composite Pulses 30

Exp. 2.7: Radiation Damping 33

Exp. 2.8: Pulse and Receiver Phases 36

Exp. 2.9: Determination of Radiofrequency Power 39

Chapter 3 Routine NMR Spectroscopy and Standard Tests 43

Exp. 3.1: The Standard 1H NMR Experiment 44

Exp. 3.2: The Standard 13C NMR Experiment 49

Exp. 3.3: The Application of Window Functions 54

Exp. 3.4: Computer-Aided Spectral Analysis 58

Exp. 3.5: Line Shape Test for 1H NMR Spectroscopy 61

Exp. 3.6: Resolution Test for 1H NMR Spectroscopy 64

Exp. 3.7: Sensitivity Test for 1H NMR Spectroscopy 67

Exp. 3.8: Line Shape Test for 13C NMR Spectroscopy 70

Exp. 3.9: ASTM Sensitivity Test for 13C NMR Spectroscopy 73

Exp. 3.10: Sensitivity Test for 13C NMR Spectroscopy 76

Exp. 3.11: Quadrature Image Test 79

Exp. 3.12: Dynamic Range Test for Signal Amplitudes 82

Exp. 3.13: 13° Phase Stability Test 85

Exp. 3.14: Radiofrequency Field Homogeneity 88

Chapter 4 Decoupling Techniques 91

Exp. 4.1: Decoupler Calibration for Homonuclear Decoupling 92

Exp. 4.2: Decoupler Calibration for Heteronuclear Decoupling 95

Exp. 4.3: Low-Power Calibration for Heteronuclear Decoupling 98

Exp. 4.4: Homonuclear Decoupling 101

Exp. 4.5: Homonuclear Decoupling at Two Frequencies 104

Exp. 4.6: The Homonuclear SPT Experiment 107

Exp. 4.7: The Heteronuclear SPT Experiment 110

Exp. 4.8: The Basic Homonuclear NOE Difference Experiment 113

Exp. 4.9: 1D Nuclear Overhauser Difference Spectroscopy 116

Exp. 4.10: 1D NOE Spectroscopy with Multiple Selective Irradiation 119

Exp. 4.11: 1H Off-Resonance Decoupled 13C NMR Spectra 122

Exp. 4.12: The Gated 1H-Decoupling Technique 125

Exp. 4.13: The Inverse Gated 1H-Decoupling Technique 128

Exp. 4.14: 1H Single-Frequency Decoupling of 13C NMR Spectra 131

Exp. 4.15: 1H Low-Power Decoupling of 13C NMR Spectra 134

Exp. 4.16: Measurement of the Heteronuclear Overhauser Effect 137

Chapter 5 Dynamic NMR Spectroscopy 140

Exp. 5.1: Low-Temperature Calibration Using Methanol 141

Exp. 5.2: High-Temperature Calibration Using 1,2-Ethanediol 145

Exp. 5.3: Dynamic 1H NMR Spectroscopy on Dimethylformamide 149

Exp. 5.4: The Saturation Transfer Experiment 152

Exp. 5.5: Measurement of the Rotating-Frame Relaxation Time T1 155

Chapter 6 1D Multipulse Sequences 159

Exp. 6.1: Measurement of the Spin Lattice Relaxation Time T1 160

Exp. 6.2: Measurement of the Spin Spin Relaxation Time T2 164

Exp. 6.3: 13C NMR Spectra with SEFT 167

Exp. 6.4: 13C NMR Spectra with APT 170

Exp. 6.5: The Basic INEPT Technique 173

Exp. 6.6: INEPT+ 176

Exp. 6.7: Refocused INEPT 179

Exp. 6.8: Reverse INEPT 182

Exp. 6.9: DEPT-135 185

Exp. 6.10: Editing 13C NMR Spectra Using DEPT 188

Exp. 6.11: DEPTQ 191

Exp. 6.12: Multiplicity Determination Using PENDANT 194

Exp. 6.13: 1D-INADEQUATE 197

Exp. 6.14: The BIRD Filter 201

Exp. 6.15: TANGO 204

Exp. 6.16: The Heteronuclear Double-Quantum Filter 207

Exp. 6.17: Purging with a Spin-Lock Pulse 210

Exp. 6.18: Water Suppression by Presaturation 213

Exp. 6.19: Water Suppression by the Jump-and-Return Method 216

Chapter 7 NMR Spectroscopy


billigbuch.ch sucht jetzt für Sie die besten Angebote ...

Loading...

Die aktuellen Verkaufspreise von 6 Onlineshops werden in Realtime abgefragt.

Sie können das gewünschte Produkt anschliessend direkt beim Anbieter Ihrer Wahl bestellen.


Feedback