Einband:
Kartonierter Einband
Herausgeber:
Manning Publications
Summary
Practical Probabilistic Programming introduces the working programmer to probabilistic programming. In it, you'll learn how to use the PP paradigm to model application domains and then express those probabilistic models in code. Although PP can seem abstract, in this book you'll immediately work on practical examples, like using the Figaro language to build a spam filter and applying Bayesian and Markov networks, to diagnose computer system data problems and recover digital images.
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About the Technology
The data you accumulate about your customers, products, and website users can help you not only to interpret your past, it can also help you predict your future! Probabilistic programming uses code to draw probabilistic inferences from data. By applying specialized algorithms, your programs assign degrees of probability to conclusions. This means you can forecast future events like sales trends, computer system failures, experimental outcomes, and many other critical concerns.
About the Book
Practical Probabilistic Programming introduces the working programmer to probabilistic programming. In this book, you'll immediately work on practical examples like building a spam filter, diagnosing computer system data problems, and recovering digital images. You'll discover probabilistic inference, where algorithms help make extended predictions about issues like social media usage. Along the way, you'll learn to use functional-style programming for text analysis, object-oriented models to predict social phenomena like the spread of tweets, and open universe models to gauge real-life social media usage. The book also has chapters on how probabilistic models can help in decision making and modeling of dynamic systems.
What's Inside
Introduction to probabilistic modelingWriting probabilistic programs in FigaroBuilding Bayesian networksPredicting product lifecyclesDecision-making algorithms
About the Reader
This book assumes no prior exposure to probabilistic programming. Knowledge of Scala is helpful.
About the Author
Avi Pfeffer is the principal developer of the Figaro language for probabilistic programming.
Table of Contents
PART 1 INTRODUCING PROBABILISTIC PROGRAMMING AND FIGAROProbabilistic programming in a nutshell A quick Figaro tutorial Creating a probabilistic programming application PART 2 WRITING PROBABILISTIC PROGRAMSProbabilistic models and probabilistic programs Modeling dependencies with Bayesian and Markov networks Using Scala and Figaro collections to build up models Object-oriented probabilistic modeling Modeling dynamic systems PART 3 INFERENCEThe three rules of probabilistic inference Factored inference algorithms Sampling algorithms Solving other inference tasks Dynamic reasoning and parameter learning
Autorentext
Avi Pfeffer is the principal developer of the Figaro language for probabilistic programming. He graduated from Stanford, taught at Harvard, and is currently a principal scientist at Charles River Analytics.
Klappentext
KEY SELLING POINTS Covers the basic rules of probabilistic inference Illustrated with useful practical examples Build a wide variety of probabilistic models AUDIENCE Code examples are written in Figaro. Some knowledge of Scala and a basic foundation in data science is helpful. No prior exposure to probabilistic programming is required.
Zusammenfassung
DESCRIPTION Data accumulated about customers, products, and website users can not only help interpret the past, it can help predict the future! Probabilistic programming is a programming paradigm in which code models are used to draw probabilistic inferences from data. By applying specialized algorithms, programs assign degrees of probability to conclusions and make it possible to forecast future events like sales trends, computer system failures, experimental outcomes, and other critical concerns. Practical Probabilistic Programming explains how to use the PP paradigm to model application domains and express those probabilistic models in code. It shows how to use the Figaro language to build a spam filter and apply Bayesian and Markov networks to diagnose computer system data problems and recover digital images. Then it dives into the world of probabilistic inference, where algorithms help turn the extended prediction of social media usage into a science. The book covers functional-style programming for text analysis and using object-oriented models to predict social phenomena like the spread of tweets, and using open universe models to model real-life social media usage. It also teaches the principles of algorithms such as belief propagation and Markov chain Monte Carlo. The book closes out with modeling dynamic systems by using a product cycle as its main example and explains how probabilistic KEY SELLING POINTS Covers the basic rules of probabilistic inference Illustrated with useful practical examples Build a wide variety of probabilistic models AUDIENCE Code examples are written in Figaro. Some knowledge of Scala and a basic foundation in data science is helpful. No prior exposure to probabilistic programming is required. ABOUT THE TECHNOLOGY Probabilistic programming is a new discipline, and the tools and best practices are still emerging. Powerful new tools like the Figaro library built into Scala make probabilistic programming more practical in day-to-day work as a data scientist.
Leider konnten wir für diesen Artikel keine Preise ermitteln ...
billigbuch.ch sucht jetzt für Sie die besten Angebote ...
Die aktuellen Verkaufspreise von
6 Onlineshops werden
in Realtime abgefragt.
Sie können das gewünschte Produkt anschliessend direkt beim Anbieter Ihrer Wahl bestellen.
# |
Onlineshop |
Preis CHF |
Versand CHF |
Total CHF |
|
|
1 |
Seller |
0.00 |
0.00
|
0.00 |
|
|
Onlineshops ohne Resultate: