How to Think Like a Mathematician

How to Think Like a Mathematician

Einband:
Kartonierter Einband
EAN:
9780521719780
Untertitel:
A Companion to Undergraduate Mathematics
Genre:
Mathematik
Autor:
Kevin (University of Leeds) Houston
Herausgeber:
Cambridge University Press
Anzahl Seiten:
274
Erscheinungsdatum:
02.12.2009
ISBN:
978-0-521-71978-0

This arsenal of tips and techniques eases new students into undergraduate mathematics, unlocking the world of definitions, theorems, and proofs.

Informationen zum Autor Kevin Houston is Senior Lecturer in Mathematics at the University of Leeds. Klappentext Looking for a head start in your undergraduate degree in mathematics? This friendly companion eases beginning students into real mathematical thinking, unlocking important techniques for effective mathematics so you can communicate with clarity, solve problems, and explore the world of definitions, theorems and proofs with real confidence. Zusammenfassung Looking for a head start in your undergraduate degree in mathematics? This friendly companion eases beginning students into real mathematical thinking! unlocking important techniques for effective mathematics so you can communicate with clarity! solve problems! and explore the world of definitions! theorems and proofs with real confidence. Inhaltsverzeichnis Preface; Part I. Study Skills For Mathematicians: 1. Sets and functions; 2. Reading mathematics; 3. Writing mathematics I; 4. Writing mathematics II; 5. How to solve problems; Part II. How To Think Logically: 6. Making a statement; 7. Implications; 8. Finer points concerning implications; 9. Converse and equivalence; 10. Quantifiers - For all and There exists; 11. Complexity and negation of quantifiers; 12. Examples and counterexamples; 13. Summary of logic; Part III. Definitions, Theorems and Proofs: 14. Definitions, theorems and proofs; 15. How to read a definition; 16. How to read a theorem; 17. Proof; 18. How to read a proof; 19. A study of Pythagoras' Theorem; Part IV. Techniques of Proof: 20. Techniques of proof I: direct method; 21. Some common mistakes; 22. Techniques of proof II: proof by cases; 23. Techniques of proof III: Contradiction; 24. Techniques of proof IV: Induction; 25. More sophisticated induction techniques; 26. Techniques of proof V: contrapositive method; Part V. Mathematics That All Good Mathematicians Need: 27. Divisors; 28. The Euclidean Algorithm; 29. Modular arithmetic; 30. Injective, surjective, bijective - and a bit about infinity; 31. Equivalence relations; Part VI. Closing Remarks: 32. Putting it all together; 33. Generalization and specialization; 34. True understanding; 35. The biggest secret; Appendices: A. Greek alphabet; B. Commonly used symbols and notation; C. How to prove that ...; Index....

Autorentext
Kevin Houston is Senior Lecturer in Mathematics at the University of Leeds.

Klappentext
Looking for a head start in your undergraduate degree in mathematics? This friendly companion eases beginning students into real mathematical thinking, unlocking important techniques for effective mathematics so you can communicate with clarity, solve problems, and explore the world of definitions, theorems and proofs with real confidence.

Inhalt
Preface; Part I. Study Skills For Mathematicians: 1. Sets and functions; 2. Reading mathematics; 3. Writing mathematics I; 4. Writing mathematics II; 5. How to solve problems; Part II. How To Think Logically: 6. Making a statement; 7. Implications; 8. Finer points concerning implications; 9. Converse and equivalence; 10. Quantifiers - For all and There exists; 11. Complexity and negation of quantifiers; 12. Examples and counterexamples; 13. Summary of logic; Part III. Definitions, Theorems and Proofs: 14. Definitions, theorems and proofs; 15. How to read a definition; 16. How to read a theorem; 17. Proof; 18. How to read a proof; 19. A study of Pythagoras' Theorem; Part IV. Techniques of Proof: 20. Techniques of proof I: direct method; 21. Some common mistakes; 22. Techniques of proof II: proof by cases; 23. Techniques of proof III: Contradiction; 24. Techniques of proof IV: Induction; 25. More sophisticated induction techniques; 26. Techniques of proof V: contrapositive method; Part V. Mathematics That All Good Mathematicians Need: 27. Divisors; 28. The Euclidean Algorithm; 29. Modular arithmetic; 30. Injective, surjective, bijective - and a bit about infinity; 31. Equivalence relations; Part VI. Closing Remarks: 32. Putting it all together; 33. Generalization and specialization; 34. True understanding; 35. The biggest secret; Appendices: A. Greek alphabet; B. Commonly used symbols and notation; C. How to prove that ...; Index.


billigbuch.ch sucht jetzt für Sie die besten Angebote ...

Loading...

Die aktuellen Verkaufspreise von 6 Onlineshops werden in Realtime abgefragt.

Sie können das gewünschte Produkt anschliessend direkt beim Anbieter Ihrer Wahl bestellen.


Feedback