Geometry from a Differentiable Viewpoint

Geometry from a Differentiable Viewpoint

Einband:
Fester Einband
EAN:
9780521116077
Untertitel:
Englisch
Autor:
McCleary John
Herausgeber:
Cambridge University Press
Auflage:
2., überarbeitete Auflage
Anzahl Seiten:
368
Erscheinungsdatum:
20.12.2012
ISBN:
978-0-521-11607-7

"The development of geometry from Euclid to Euler to Lobachevsky, Bolyai, Gauss, and Riemann is a story that is often broken into parts - axiomatic geometry, non-Euclidean geometry, and differential geometry. This poses a problem for undergraduates: Which part is geometry? What is the big picture to which these parts belong? In this introduction to differential geometry, the parts are united with all of their interrelations, motivated by the history of the parallel postulate. Beginning with the ancient sources, the author first explores synthetic methods in Euclidean and non-Euclidean geometry and then introduces differential geometry in its classical formulation, leading to the modern formulation on manifolds such as space-time. The presentation is enlivened by historical diversions such as Hugyens's clock and the mathematics of cartography. The intertwined approaches will help undergraduates understand the role of elementary ideas in the more general, differential setting. This thoroughly revised second edition includes numerous new exercises and a new solution key. New topics include Clairaut's relation for geodesics, Euclid's geometry of space, further properties of cycloids and map projections, and the use of transformations such as the reflections of the Beltrami disk"--

' the author has succeeded in making differential geometry an approachable subject for advanced undergraduates.' Andrej Bucki, Mathematical Reviews

Autorentext
John McCleary is Professor of Mathematics at Vassar College on the Elizabeth Stillman Williams Chair. His research interests lie at the boundary between geometry and topology, especially where algebraic topology plays a role. His papers on topology have appeared in Inventiones Mathematicae, the American Journal of Mathematics and other journals, and he has written expository papers that have appeared in American Mathematical Monthly. He is also interested in the history of mathematics, especially the history of geometry in the nineteenth century and of topology in the twentieth century. He is the author of A User's Guide to Spectral Sequences and A First Course in Topology: Continuity and Dimension, and he has edited proceedings in topology and in history, as well as a volume of the collected works of John Milnor. He has been a visitor to the mathematics institutes in Goettingen, Strasbourg and Cambridge, and to MSRI in Berkeley.

Klappentext
A thoroughly revised second edition of a textbook for a first course in differential/modern geometry that introduces methods within a historical context.

Zusammenfassung
This text, for a first course in differential or modern geometry, introduces methods within a historical context that is familiar to students from high school. The thoroughly revised second edition has been reorganized for greater clarity and includes numerous new exercises and topics such as Euclid's geometry of space.

Inhalt
Part I. Prelude and Themes: Synthetic Methods and Results: 1. Spherical geometry; 2. Euclid; 3. The theory of parallels; 4. Non-Euclidean geometry; Part II. Development: Differential Geometry: 5. Curves in the plane; 6. Curves in space; 7. Surfaces; 8. Curvature for surfaces; 9. Metric equivalence of surfaces; 10. Geodesics; 11. The Gauss-Bonnet theorem; 12. Constant-curvature surfaces; Part III. Recapitulation and Coda: 13. Abstract surfaces; 14. Modeling the non-Euclidean plane; 15. Epilogue: where from here?


billigbuch.ch sucht jetzt für Sie die besten Angebote ...

Loading...

Die aktuellen Verkaufspreise von 6 Onlineshops werden in Realtime abgefragt.

Sie können das gewünschte Produkt anschliessend direkt beim Anbieter Ihrer Wahl bestellen.


Feedback